Factorizations and representations of the backward second-order linear recurrences
نویسندگان
چکیده
We show the relationships between the determinants and permanents of certain tridiagonal matrices and the negatively subscripted terms of second-order linear recurrences.Also considering how to the negatively subscripted terms of second-order linear recurrences can be connected to Chebyshev polynomials by determinants of these matrices, we give factorizations and representations of these numbers. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Factorizations and Representations of Second Order Linear Recurrences with Indices in Arithmetic Progressions
In this paper we consider second order recurrences {Vk} and {Un} . We give second order linear recurrences for the sequences {V±kn} and {U±kn}. Using these recurrence relations, we derive relationships between the determinants of certain matrices and these sequences. Further, as generalizations of the earlier results, we give representations and trigonometric factorizations of these sequences b...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملRiordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملGenerating Matrices for Weighted Sums of Second Order Linear Recurrences
In this paper, we give fourth order recurrences and generating matrices for the weighted sums of second order recurrences. We derive by matrix methods some new explicit formulas and combinatorial representations, and some relationships between the permanents of certain superdiagonal matrices and these sums.
متن کاملUsing both Binary and Residue Representations for Achieving Fast Converters in RNS
In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006